Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.605
Filtrar
1.
Nefrología (Madrid) ; 44(2): 139-149, Mar-Abr. 2024. tab, graf
Artículo en Inglés | IBECS | ID: ibc-231563

RESUMEN

Losartan is widely used in the treatment of chronic kidney disease (CKD) and has achieved good clinical efficacy, but its exact mechanism is not clear. We performed high-throughput sequencing (HTS) technology to screen the potential target of losartan in treating CKD. According to the HTS results, we found that the tumor necrosis factor (TNF) signal pathway was enriched. Therefore, we conducted in vivo and in vitro experiments to verify it. We found that TNF signal pathway was activated in both unilateral ureteral obstruction (UUO) rats and human proximal renal tubular epithelial cells (HK-2) treated with transforming growth factor-β1 (TGF-β1), while losartan can significantly inhibit TNF signal pathway as well as the expression of fibrosis related genes (such as COL-1, α-SMA and Vimentin). These data suggest that losartan may ameliorate renal fibrosis through modulating the TNF pathway.(AU)


El Losartán es ampliamente utilizado en el tratamiento de la enfermedad renal crónica (CKD) y ha logrado buenos resultados clínicos, pero su mecanismo exacto aún no está claro. Utilizamos la técnica de secuenciación de alto rendimiento (HTS) para detectar posibles dianas de losartán para el tratamiento de la CKD. Según los resultados de HTS, encontramos un enriquecimiento de la vía de señalización del factor de necrosis tumoral (TNF). Así, realizamos experimentos in vivo e in vitro para verificar esto. Encontramos que, tanto en ratas con obstrucción ureteral unilateral (uuo) como en células epiteliales tubulares renales proximal humanas (HK-2) tratadas con factor de crecimiento transformador β1 (TGF-β1), se activó la vía de señalización del TNF. El losartán inhibe significativamente la expresión de las vías de señalización del TNF y genes relacionados con la fibrosis, como COL-1, α-SMA y vicentin. Estos datos sugieren que el losartán puede mejorar la fibrosis renal regulando la vía del TNF.(AU)


Asunto(s)
Humanos , Masculino , Femenino , Factores de Necrosis Tumoral , Losartán/administración & dosificación , Insuficiencia Renal Crónica/tratamiento farmacológico , Fibrosis/tratamiento farmacológico , Secuenciación de Nucleótidos de Alto Rendimiento , Nefrología , Enfermedades Renales
2.
Adv Sci (Weinh) ; 11(13): e2307850, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38240457

RESUMEN

Kidney fibrosis is a common fate of chronic kidney diseases (CKDs), eventually leading to renal dysfunction. Yet, no effective treatment for this pathological process has been achieved. During the bioassay-guided chemical investigation of the medicinal plant Wikstroemia chamaedaphne, a daphne diterpenoid, daphnepedunin A (DA), is characterized as a promising anti-renal fibrotic lead. DA shows significant anti-kidney fibrosis effects in cultured renal fibroblasts and unilateral ureteral obstructed mice, being more potent than the clinical trial drug pirfenidone. Leveraging the thermal proteome profiling strategy, cell division cycle 42 (Cdc42) is identified as the direct target of DA. Mechanistically, DA targets to reduce Cdc42 activity and down-regulates its downstream phospho-protein kinase Cζ(p-PKCζ)/phospho-glycogen synthase kinase-3ß (p-GSK-3ß), thereby promoting ß-catenin Ser33/37/Thr41 phosphorylation and ubiquitin-dependent proteolysis to block classical pro-fibrotic ß-catenin signaling. These findings suggest that Cdc42 is a promising therapeutic target for kidney fibrosis, and highlight DA as a potent Cdc42 inhibitor for combating CKDs.


Asunto(s)
Diterpenos , Enfermedades Renales , Proteína de Unión al GTP cdc42 , Animales , Ratones , beta Catenina/efectos de los fármacos , beta Catenina/metabolismo , Fibrosis/tratamiento farmacológico , Glucógeno Sintasa Quinasa 3 beta/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Riñón/metabolismo , Enfermedades Renales/tratamiento farmacológico , Wikstroemia/química , Diterpenos/farmacología , Proteína de Unión al GTP cdc42/efectos de los fármacos
4.
J Hepatol ; 79(6): 1557-1565, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37562748

RESUMEN

The principle pathological drivers of metabolic dysfunction-associated steatohepatitis (MASH) are obesity and associated insulin resistance, rendering them key therapeutic targets. As glucagon-like peptide 1 receptor agonists (GLP-1RAs) have been licensed for the treatment of diabetes and obesity, they were one of the first drug types to be evaluated in patients with MASH, and successful phase IIa and IIb studies have resulted in progression to phase III clinical trials. Alongside GLP-1RAs, newer combinations with glucagon agonists and/or glucose-dependent insulinotropic peptide (GIP) agonists have been explored in related patient groups, with evidence of improvements in weight, insulin resistance and non-invasive liver parameters. Whether GLP-1RAs have direct, independent effects on MASH or whether they impact on pathophysiology through improvements in weight, insulin resistance and glycaemic control remains a matter of debate. Combinations are being explored, although the potential improvement in efficacy will need to be weighed against the cumulative side-effect burden, potential drug-drug interactions and costs. There is also uncertainty regarding the optimal ratio of glucagon and GIP agonism to GLP-1 agonism in combination agents, and as to whether GIP agonism or antagonism is the optimal approach. Finally, there are also multiple hypothetical permutations combining gut hormone agonists with other emerging assets in the field. Given that the likely dominant mode of action of gut hormone agonists is upstream on weight, initial combinations might focus on agents which have been shown to have a more direct effect on fibrosis, which would include FGF21 and pan-PPAR agonists.


Asunto(s)
Hígado Graso , Incretinas , Incretinas/agonistas , Hígado Graso/tratamiento farmacológico , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/agonistas , Humanos , Ensayos Clínicos como Asunto , Animales , Fibrosis/tratamiento farmacológico , Terapia Molecular Dirigida
5.
J Control Release ; 360: 69-81, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315694

RESUMEN

Tissue fibrosis is characterized by excessive deposition of extracellular matrix (ECM) molecules. Fibronectin (FN) is a glycoprotein found in the blood and tissues, a key player in the assembly of ECM through interaction with cellular and extracellular components. Functional Upstream Domain (FUD), a peptide derived from an adhesin protein of bacteria, has a high binding affinity for the N-terminal 70-kDa domain of FN that plays a crucial role in FN polymerization. In this regard, FUD peptide has been characterized as a potent inhibitor of FN matrix assembly, reducing excessive ECM accumulation. Furthermore, PEGylated FUD was developed to prevent rapid elimination of FUD and enhance its systemic exposure in vivo. Herein, we summarize the development of FUD peptide as a potential anti-fibrotic agent and its application in experimental fibrotic diseases. In addition, we discuss how modification of the FUD peptide via PEGylation impacts pharmacokinetic profiles of the FUD peptide and can potentially contribute to anti-fibrosis therapy.


Asunto(s)
Fibronectinas , Péptidos , Adhesinas Bacterianas/química , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Péptidos/química , Polietilenglicoles/química , Fibrosis/tratamiento farmacológico
6.
Pharm Biol ; 61(1): 963-972, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37357417

RESUMEN

CONTEXT: Punicalagin has myocardial protection; the mechanism of punicalagin on ventricular remodeling (VR) after acute myocardial infarction (AMI) remains unclear. OBJECTIVE: These studies explore the role and mechanism of punicalagin in preventing and treating VR after AMI. MATERIALS AND METHODS: Molecular docking was used to predict the targets of punicalagin. After 2 weeks of AMI model, the SD rats were randomly divided into model, and punicalagin (200, 400 mg/kg, gavage) groups for 4 weeks. Thoracotomy with perforation but no ligature was performed on rats in control group. The protein expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3), apoptosis speck-like protein (ASC), caspase-1, gasdermin D (GSDMD), and GSDMD-N, the mRNA expression of NLRP3, caspase-1, GSDMD, interleukin-1ß (IL-1ß) and IL-18 were evaluated. RESULTS: Punicalagin had binding activities with NLRP3 (Vina score, -5.8), caspase-1 (Vina score, -6.7), and GSDMD (Vina score, -6.7). Punicalagin could improve cardiac function, alleviate cardiac pathological changes, minimize the excessive accumulation of collagen in the left ventricular myocardium (p < 0.01), and inhibit cardiomyocyte apoptosis (p < 0.01). Furthermore, punicalagin could inhibit the overexpression of NLRP3, caspase-1, and GSDMD via immunohistochemistry (p < 0.01). Punicalagin inhibited the protein levels of NLRP3, caspase-1, ASC, GSDMD, and GSDMD-N (p < 0.05, p < 0.01). Punicalagin reduced the mRNA expression of NLRP3, caspase-1, GSDMD, IL-1ß and IL-18 (p < 0.05, p < 0.01). CONCLUSIONS: Punicalagin may provide a useful treatment for the future myocardial protection.


Asunto(s)
Taninos Hidrolizables , Infarto del Miocardio , Transducción de Señal , Remodelación Ventricular , Taninos Hidrolizables/administración & dosificación , Animales , Ratas , Remodelación Ventricular/efectos de los fármacos , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Transducción de Señal/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Simulación del Acoplamiento Molecular , Fibrosis/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Apoptosis/efectos de los fármacos , Caspasa 1/metabolismo
7.
N Engl J Med ; 389(11): 998-1008, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37356033

RESUMEN

BACKGROUND: Pegozafermin is a long-acting glycopegylated (pegylated with the use of site-specific glycosyltransferases) fibroblast growth factor 21 (FGF21) analogue in development for the treatment of nonalcoholic steatohepatitis (NASH) and severe hypertriglyceridemia. The efficacy and safety of pegozafermin in patients with biopsy-proven noncirrhotic NASH are not well established. METHODS: In this phase 2b, multicenter, double-blind, 24-week, randomized, placebo-controlled trial, we randomly assigned patients with biopsy-confirmed NASH and stage F2 or F3 (moderate or severe) fibrosis to receive subcutaneous pegozafermin at a dose of 15 mg or 30 mg weekly or 44 mg once every 2 weeks or placebo weekly or every 2 weeks. The two primary end points were an improvement in fibrosis (defined as reduction by ≥1 stage, on a scale from 0 to 4, with higher stages indicating greater severity), with no worsening of NASH, at 24 weeks and NASH resolution without worsening of fibrosis at 24 weeks. Safety was also assessed. RESULTS: Among the 222 patients who underwent randomization, 219 received pegozafermin or placebo. The percentage of patients who met the criteria for fibrosis improvement was 7% in the pooled placebo group, 22% in the 15-mg pegozafermin group (difference vs. placebo, 14 percentage points; 95% confidence interval [CI], -9 to 38), 26% in the 30-mg pegozafermin group (difference, 19 percentage points; 95% CI, 5 to 32; P = 0.009), and 27% in the 44-mg pegozafermin group (difference, 20 percentage points; 95% CI, 5 to 35; P = 0.008). The percentage of patients who met the criteria for NASH resolution was 2% in the placebo group, 37% in the 15-mg pegozafermin group (difference vs. placebo, 35 percentage points; 95% CI, 10 to 59), 23% in the 30-mg pegozafermin group (difference, 21 percentage points; 95% CI, 9 to 33), and 26% in the 44-mg pegozafermin group (difference, 24 percentage points; 95% CI, 10 to 37). The most common adverse events associated with pegozafermin therapy were nausea and diarrhea. CONCLUSIONS: In this phase 2b trial, treatment with pegozafermin led to improvements in fibrosis. These results support the advancement of pegozafermin into phase 3 development. (Funded by 89bio; ENLIVEN ClinicalTrials.gov number, NCT04929483.).


Asunto(s)
Factores de Crecimiento de Fibroblastos , Fibrosis , Fármacos Gastrointestinales , Enfermedad del Hígado Graso no Alcohólico , Humanos , Biopsia , Método Doble Ciego , Factores de Crecimiento de Fibroblastos/análogos & derivados , Fibrosis/tratamiento farmacológico , Fibrosis/etiología , Fibrosis/patología , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/uso terapéutico , Inyecciones Subcutáneas , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología , Resultado del Tratamiento
8.
Chin J Nat Med ; 21(5): 359-370, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37245874

RESUMEN

Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-ß1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-ß1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.


Asunto(s)
Acuaporina 1 , Medicamentos Herbarios Chinos , Insuficiencia Renal Crónica , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Humanos , Animales , Ratones , Masculino , Línea Celular , Ratas , Riñón/patología , Riñón/fisiología , Fibrosis/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Adenina , Transición Epitelial-Mesenquimal , Acuaporina 1/metabolismo
9.
Acta Pharmacol Sin ; 44(10): 2065-2074, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37225845

RESUMEN

Diabetes-related vascular complications include diabetic cardiovascular diseases (CVD), diabetic nephropathy (DN) and diabetic retinopathy, etc. DN can promote the process of end-stage renal disease. On the other hand, atherosclerosis accelerates kidney damage. It is really an urge to explore the mechanisms of diabetes-exacerbated atherosclerosis as well as new agents for treatment of diabetes-exacerbated atherosclerosis and the complications. In this study we investigated the therapeutic effects of fisetin, a natural flavonoid from fruits and vegetables, on kidney injury caused by streptozotocin (STZ)-induced diabetic atherosclerosis in low density lipoprotein receptor deficient (LDLR-/-) mice. Diabetes was induced in LDLR-/- mice by injecting STZ, and the mice were fed high-fat diet (HFD) containing fisetin for 12 weeks. We found that fisetin treatment effectively attenuated diabetes-exacerbated atherosclerosis. Furthermore, we showed that fisetin treatment significantly ameliorated atherosclerosis-enhanced diabetic kidney injury, evidenced by regulating uric acid, urea and creatinine levels in urine and serum, and ameliorating morphological damages and fibrosis in the kidney. In addition, we found that the improvement of glomerular function by fisetin was mediated by reducing the production of reactive oxygen species (ROS), advanced glycosylation end products (AGEs) and inflammatory cytokines. Furthermore, fisetin treatment reduced accumulation of extracellular matrix (ECM) in the kidney by inhibiting the expression of vascular endothelial growth factor A (VEGFA), fibronectin and collagens, while enhancing matrix metalloproteinases 2 (MMP2) and MMP9, which was mainly mediated by inactivating transforming growth factor ß (TGFß)/SMAD family member 2/3 (Smad2/3) pathways. In both in vivo and in vitro experiments, we demonstrated that the therapeutic effects of fisetin on kidney fibrosis resulted from inhibiting CD36 expression. In conclusion, our results suggest that fisetin is a promising natural agent for the treatment of renal injury caused by diabetes and atherosclerosis. We reveal that fisetin is an inhibitor of CD36 for reducing the progression of kidney fibrosis, and fisetin-regulated CD36 may be a therapeutic target for the treatment of renal fibrosis.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Fibrosis/tratamiento farmacológico , Riñón/patología , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos CD36/efectos de los fármacos
10.
Leukemia ; 37(5): 1068-1079, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928007

RESUMEN

Clonal myeloproliferation and development of bone marrow (BM) fibrosis are the major pathogenetic events in myelofibrosis (MF). The identification of novel antifibrotic strategies is of utmost importance since the effectiveness of current therapies in reverting BM fibrosis is debated. We previously demonstrated that osteopontin (OPN) has a profibrotic role in MF by promoting mesenchymal stromal cells proliferation and collagen production. Moreover, increased plasma OPN correlated with higher BM fibrosis grade and inferior overall survival in MF patients. To understand whether OPN is a druggable target in MF, we assessed putative inhibitors of OPN expression in vitro and identified ERK1/2 as a major regulator of OPN production. Increased OPN plasma levels were associated with BM fibrosis development in the Romiplostim-induced MF mouse model. Moreover, ERK1/2 inhibition led to a remarkable reduction of OPN production and BM fibrosis in Romiplostim-treated mice. Strikingly, the antifibrotic effect of ERK1/2 inhibition can be mainly ascribed to the reduced OPN production since it could be recapitulated through the administration of anti-OPN neutralizing antibody. Our results demonstrate that OPN is a novel druggable target in MF and pave the way to antifibrotic therapies based on the inhibition of ERK1/2-driven OPN production or the neutralization of OPN activity.


Asunto(s)
Osteopontina , Mielofibrosis Primaria , Mielofibrosis Primaria/tratamiento farmacológico , Mielofibrosis Primaria/metabolismo , Mielofibrosis Primaria/patología , Animales , Ratones , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Osteopontina/antagonistas & inhibidores , Osteopontina/sangre , Osteopontina/metabolismo , Fibrosis/tratamiento farmacológico , Humanos
11.
Artículo en Chino | MEDLINE | ID: mdl-36725301

RESUMEN

Pulmonary fibrosis is the end-stage pathological change of lung diseases, which seriously affects the respiratory function of human body. A large number of studies at home and abroad have confirmed that epithelial-mesenchymal transition (EMT) is an important intermediate stage in the development of pulmonary fibrosis. Inhibition of multiple pathways upstream and downstream of EMT, such as the classical Smads pathway and non-Smads pathway of TGF-1 can effectively inhibit the process of EMT and alleviate pulmonary fibrosis. This article will review the main conclusions of the mechanism of action of EMT as a target to improve the pathology of pulmonary fibrosis so far, and provide a theoretical basis and research direction for further research and development of anti-pulmonary fibrosis drugs.


Asunto(s)
Antifibróticos , Transición Epitelial-Mesenquimal , Fibrosis Pulmonar , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Antifibróticos/farmacología , Antifibróticos/uso terapéutico
12.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36835008

RESUMEN

Myeloperoxidase is an enzyme released by neutrophils when neutrophil extracellular traps (NETs) are formed. Besides myeloperoxidase activity against pathogens, it was also linked to many diseases, including inflammatory and fibrotic ones. Endometrosis is a fibrotic disease of the mare endometrium, with a large impact on their fertility, where myeloperoxidase was shown to induce fibrosis. Noscapine is an alkaloid with a low toxicity, that has been studied as an anti-cancer drug, and more recently as an anti-fibrotic molecule. This work aims to evaluate noscapine inhibition of collagen type 1 (COL1) induced by myeloperoxidase in equine endometrial explants from follicular and mid-luteal phases, at 24 and 48 h of treatment. The transcription of collagen type 1 alpha 2 chain (COL1A2), and COL1 protein relative abundance were evaluated by qPCR and Western blot, respectively. The treatment with myeloperoxidase increased COL1A2 mRNA transcription and COL1 protein, whereas noscapine was able to reduce this effect with respect to COL1A2 mRNA transcription, in a time/estrous cycle phase-dependent manner (in explants from the follicular phase, at 24 h of treatment). Our study indicates that noscapine is a promising drug to be considered as an anti-fibrotic molecule to prevent endometrosis development, making noscapine a strong candidate to be applied in future endometrosis therapies.


Asunto(s)
Fibrosis , Noscapina , Peroxidasa , Animales , Femenino , Colágeno/metabolismo , Endometrio/efectos de los fármacos , Endometrio/metabolismo , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Fibrosis/veterinaria , Caballos/metabolismo , Noscapina/farmacología , Noscapina/uso terapéutico , Peroxidasa/antagonistas & inhibidores , Peroxidasa/metabolismo , ARN Mensajero/metabolismo
13.
Pharm Biol ; 61(1): 23-29, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36524761

RESUMEN

CONTEXT: Salvianolic acid B (SAB) can alleviate renal fibrosis and improve the renal function. OBJECTIVE: To investigate the effect of SAB on renal tubulointerstitial fibrosis and explore its underlying mechanisms. MATERIALS AND METHODS: Male C57 mice were subjected to unilateral ureteric obstruction (UUO) and aristolochic acid nephropathy (AAN) for renal fibrosis indication. Vehicle or SAB (10 mg/kg/d, i.p.) were given consecutively for 2 weeks in UUO mice while 4 weeks in AAN mice. The serum creatinine (Scr) and blood urine nitrogen (BUN) were measured. Masson's trichrome staining and the fibrotic markers (FN and α-SMA) were used to evaluate renal fibrosis. NRK-49F cells exposed to 2.5 ng/mL TGF-ß were treated with SAB in the presence or absence of 20 µM 3-DZNep, an inhibitor of EZH2. The protein expression of EZH2, H3k27me3 and PTEN/Akt signaling pathway in renal tissue and NRK-49F cells were measured by Western blots. RESULTS: SAB significantly improved the levels of Scr by 24.3% and BUN by 35.7% in AAN mice. SAB reduced renal interstitial collagen deposition by 34.7% in UUO mice and 72.8% in AAN mice. Both in vivo and in vitro studies demonstrated that SAB suppressed the expression of FN and α-SMA, increased PTEN and decreased the phosphorylation of Akt, which were correlated with the down-regulation of EZH2 and H3k27me3. The inhibition of EZH2 attenuated the anti-fibrotic effects of SAB in NRK-49Fs. CONCLUSION: SAB might have therapeutic potential on renal fibrosis of CKD through inhibiting EZH2, which encourages further clinical trials.


Asunto(s)
Enfermedades Renales , Animales , Masculino , Ratones , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Histonas/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Enfermedades Renales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Benzofuranos/farmacología , Benzofuranos/uso terapéutico , Depsidos/farmacología , Depsidos/uso terapéutico , Proteína Potenciadora del Homólogo Zeste 2/antagonistas & inhibidores , Proteína Potenciadora del Homólogo Zeste 2/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo
14.
Acta Pharmacol Sin ; 44(5): 1038-1050, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36470978

RESUMEN

Renal interstitial fibrosis is the common pathological process of various chronic kidney diseases to end-stage renal disease. Inhibition of fibroblast activation attenuates renal interstitial fibrosis. Our previous studies show that poricoic acid A (PAA) isolated from Poria cocos is a potent anti-fibrotic agent. In the present study we investigated the effects of PAA on renal fibroblast activation and interstitial fibrosis and the underlying mechanisms. Renal interstitial fibrosis was induced in rats or mice by unilateral ureteral obstruction (UUO). UUO rats were administered PAA (10 mg·kg-1·d-1, i.g.) for 1 or 2 weeks. An in vitro model of renal fibrosis was established in normal renal kidney fibroblasts (NRK-49F cells) treated with TGF-ß1. We showed that PAA treatment rescued Sirt3 expression, and significantly attenuated renal fibroblast activation and interstitial fibrosis in both the in vivo and in vitro models. In TGF-ß1-treated NRK-49F cells, we demonstrated that Sirt3 deacetylated ß-catenin (a key transcription factor of fibroblast activation) and then accelerated its ubiquitin-dependent degradation, thus suppressing the protein expression and promoter activity of pro-fibrotic downstream target genes (twist, snail1, MMP-7 and PAI-1) to alleviate fibroblast activation; the lysine-49 (K49) of ß-catenin was responsible for Sirt3-mediated ß-catenin deacetylation. In molecular docking analysis, we found the potential interaction of Sirt3 and PAA. In both in vivo and in vitro models, pharmacological activation of Sirt3 by PAA significantly suppressed renal fibroblast activation via facilitating ß-catenin K49 deacetylation. In UUO mice and NRK-49F cells, Sirt3 overexpression enhanced the anti-fibrotic effect of PAA, whereas Sirt3 knockdown weakened the effect. Taken together, PAA attenuates renal fibroblast activation and interstitial fibrosis by upregulating Sirt3 and inducing ß-catenin K49 deacetylation, highlighting Sirt3 functions as a promising therapeutic target of renal fibroblast activation and interstitial fibrosis.


Asunto(s)
Enfermedades Renales , Sirtuina 3 , Triterpenos , beta Catenina , Animales , Ratones , Ratas , beta Catenina/química , beta Catenina/metabolismo , Fibroblastos , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Riñón/patología , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/patología , Simulación del Acoplamiento Molecular , Transducción de Señal , Sirtuina 3/efectos de los fármacos , Sirtuina 3/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Obstrucción Ureteral/complicaciones , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico
15.
Acta Pharmacol Sin ; 44(5): 1051-1065, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36347997

RESUMEN

Previous studies have shown mitochondrial dysfunction in various acute kidney injuries and chronic kidney diseases. Lipoic acid exerts potent effects on oxidant stress and modulation of mitochondrial function in damaged organ. In this study we investigated whether alpha lipoamide (ALM), a derivative of lipoic acid, exerted a renal protective effect in a type 2 diabetes mellitus mouse model. 9-week-old db/db mice were treated with ALM (50 mg·kg-1·d-1, i.g) for 8 weeks. We showed that ALM administration did not affect blood glucose levels in db/db mice, but restored renal function and significantly improved fibrosis of kidneys. We demonstrated that ALM administration significantly ameliorated mitochondrial dysfunction and tubulointerstitial fibrotic lesions, along with increased expression of CDX2 and CFTR and decreased expression of ß-catenin and Snail in kidneys of db/db mice. Similar protective effects were observed in rat renal tubular epithelial cell line NRK-52E cultured in high-glucose medium following treatment with ALM (200 µM). The protective mechanisms of ALM in diabetic kidney disease (DKD) were further explored: Autodock Vina software predicted that ALM could activate RXRα protein by forming stable hydrogen bonds. PROMO Database predicted that RXRα could bind the promoter sequences of CDX2 gene. Knockdown of RXRα expression in NRK-52E cells under normal glucose condition suppressed CDX2 expression and promoted phenotypic changes in renal tubular epithelial cells. However, RXRα overexpression increased CDX2 expression which in turn inhibited high glucose-mediated renal tubular epithelial cell injury. Therefore, we reveal the protective effect of ALM on DKD and its possible potential targets: ALM ameliorates mitochondrial dysfunction and regulates the CDX2/CFTR/ß-catenin signaling axis through upregulation and activation of RXRα. Schematic figure illustrating that ALM alleviates diabetic kidney disease by improving mitochondrial function and upregulation and activation of RXRα, which in turn upregulated CDX2 to exert an inhibitory effect on ß-catenin activation and nuclear translocation. RTEC renal tubular epithelial cell. ROS Reactive oxygen species. RXRα Retinoid X receptor-α. Mfn1 Mitofusin 1. Drp1 dynamic-related protein 1. MDA malondialdehyde. 4-HNE 4-hydroxynonenal. T-SOD Total-superoxide dismutase. CDX2 Caudal-type homeobox transcription factor 2. CFTR Cystic fibrosis transmembrane conductance regulator. EMT epithelial mesenchymal transition. α-SMA Alpha-smooth muscle actin. ECM extracellular matrix. DKD diabetic kidney disease. Schematic figure was drawn by Figdraw ( www.figdraw.com ).


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ácido Tióctico , Animales , Ratones , Ratas , beta Catenina/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/patología , Transición Epitelial-Mesenquimal , Fibrosis/tratamiento farmacológico , Fibrosis/metabolismo , Glucosa/metabolismo , Riñón/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Receptor alfa X Retinoide/efectos de los fármacos , Receptor alfa X Retinoide/metabolismo
16.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-982707

RESUMEN

Renal interstitial fibrosis (RIF) is the crucial pathway in chronic kidney disease (CKD) leading to the end-stage renal failure. However, the underlying mechanism of Shen Qi Wan (SQW) on RIF is not fully understood. In the current study, we investigated the role of Aquaporin 1 (AQP1) in SQW on tubular epithelial-to-mesenchymal transition (EMT). A RIF mouse model induced by adenine and a TGF-β1-stimulated HK-2 cell model were etablished to explore the involvement of AQP 1 in the protective effect of SQW on EMT in vitro and in vivo. Subsequently, the molecular mechanism of SQW on EMT was explored in HK-2 cells with AQP1 knockdown. The results indicated that SQW alleviated kidney injury and renal collagen deposition in the kidneys of mice induced by adenine, increased the protein expression of E-cadherin and AQP1 expression, and decreased the expression of vimentin and α-smooth muscle actin (α-SMA). Similarly, treatmement with SQW-containing serum significantly halted EMT process in TGF-β1 stimulated HK-2 cells. The expression of snail and slug was significantly upregulated in HK-2 cells after knockdown of AQP1. AQP1 knockdown also increased the mRNA expression of vimentin and α-SMA, and decreased the expression of E-cadherin. The protein expression of vimentin increased, while the expression of E-cadherin and CK-18 significantly decreased after AQP1 knockdown in HK-2 cells. These results revealed that AQP1 knockdown promoted EMT. Furthermore, AQP1 knockdown abolished the protective effect of SQW-containing serum on EMT in HK-2 cells. In sum, SQW attentuates EMT process in RIF through upregulation of the expression of AQP1.


Asunto(s)
Humanos , Animales , Ratones , Masculino , Ratas , Medicamentos Herbarios Chinos/farmacología , Línea Celular , Riñón/fisiología , Fibrosis/tratamiento farmacológico , Insuficiencia Renal Crónica/tratamiento farmacológico , Adenina , Transición Epitelial-Mesenquimal , Acuaporina 1/metabolismo
17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-970716

RESUMEN

Pulmonary fibrosis is the end-stage pathological change of lung diseases, which seriously affects the respiratory function of human body. A large number of studies at home and abroad have confirmed that epithelial-mesenchymal transition (EMT) is an important intermediate stage in the development of pulmonary fibrosis. Inhibition of multiple pathways upstream and downstream of EMT, such as the classical Smads pathway and non-Smads pathway of TGF-1 can effectively inhibit the process of EMT and alleviate pulmonary fibrosis. This article will review the main conclusions of the mechanism of action of EMT as a target to improve the pathology of pulmonary fibrosis so far, and provide a theoretical basis and research direction for further research and development of anti-pulmonary fibrosis drugs.


Asunto(s)
Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis Pulmonar/patología , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Antifibróticos/uso terapéutico
18.
J Mol Med (Berl) ; 100(6): 861-874, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35589840

RESUMEN

Galectins are a family of proteins with at least one carbohydrate-recognition domain. Galectins are present in various tissues and organs and participate in different physiological and pathological molecular reactions in vivo. Wound healing is the basic process of traumatic disease recovery. Wound healing involves three overlapping stages: inflammation, proliferation, and remodelling. Furthermore, a comparison of wound healing with the tumour microenvironment revealed that galectin plays a key role in the wound healing process. The current review describes the role of galectin in inflammation, angiogenesis, re-epithelialisation, and fibrous scar formation and evaluates its potential as a therapeutic drug for wounds.


Asunto(s)
Fibrosis , Galectinas , Cicatrización de Heridas , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Galectinas/metabolismo , Galectinas/farmacología , Humanos , Inflamación , Microambiente Tumoral , Cicatrización de Heridas/efectos de los fármacos , Cicatrización de Heridas/fisiología
19.
Pharm Biol ; 60(1): 570-578, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35244521

RESUMEN

CONTEXT: Injection of YiQiFuMai (YQFM) powder, a modern Chinese plant-derived medical preparation, has a therapeutic effect in heart failure (HF). However, its therapeutic mechanism remains largely unknown. OBJECTIVE: To investigate the molecular mechanisms of YQFM in HF. MATERIALS AND METHODS: Kinase inhibition profiling assays with 2 mg/mL YQFM were performed against a series of 408 kinases. In addition, the effects of kinase inhibition were validated in cardiomyocyte cell line H9c2. In vivo, HF with reduced ejection fraction (HFrEF) was induced by permanent left anterior descending (LAD) coronary artery ligation for 6 weeks in male Sprague-Dawley rats. Then, HFrEF mice were treated with 0.46 g/kg YQFM or placebo once a day for 2 weeks. Echocardiography, immunohistochemistry, histological staining and Western blotting analysis were performed to assess the myocardial damage and molecular mechanisms. RESULTS: Kinase inhibition profiling analysis demonstrated that mitogen-activated protein kinases (MAPKs) mediated the signalling cascades of YQFM during HF therapy. Meanwhile, p38 and extracellular signal-regulated kinases (ERK1/2) were inhibited after YQFM treatment in H9c2 cells. In rats, the control group had lower left ventricular ejection fraction (LVEF) at 37 ± 1.7% compared with the YQFM group at 54 ± 1.1% (p < 0.0001). Cardiac fibrosis levels in control group rats were significantly higher than YQFM group (30.5 ± 3.0 vs. 14.1 ± 1.0, p < 0.0001). CONCLUSIONS: Our collective in vitro and in vivo experiments demonstrated that YQFM improves left ventricular (LV) function and inhibits fibrosis in HFrEF rats by inhibiting MAPK signalling pathways.


Asunto(s)
Cardiotónicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Insuficiencia Cardíaca/prevención & control , Función Ventricular Izquierda/efectos de los fármacos , Animales , Línea Celular , Fibrosis/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Miocitos Cardíacos/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Volumen Sistólico/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
20.
Gene ; 820: 146239, 2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35114278

RESUMEN

The goal of the present study was to investigate the protective effect of calcitriol on high-salt diet-induced hypertension. The hypertension rat model was established by a long-term high-salt diet (8% NaCl). Rats were treated with calcitriol, losartan, or their combination. Histological staining was used to confirm renal pathology. Global transcriptome analysis of renal tissues was performed, and the mechanism of the therapeutic effect of calcitriol was analysed by functional annotation and pathway analysis of the differentially expressed genes (DEGs) as well as by Western blotting analysis. The core genes for potential therapeutic regulation were identified through the coexpression gene network. For in vitro HK-2 cell experiments, small interfering RNA (siRNA) was used to knockdown key a transcription factor (TF) Glis2 to validate the therapeutic target of calcitriol. MAPK1 and CXCL12 expression was downregulated and the apoptosis pathway was significantly enriched by calcitriol treatment. The western blotting results showed that calcitriol treatment increased AMPK phosphorylation and decreased downstream mTOR phosphorylation, which was accompanied by a decrease in autophagy protein p62 expression and an increase in LC3-II/I expression. GLIS2 was identified as a specific therapeutic target for calcitriol. GLIS2 expression was upregulated by calcitriol and confirmed by HK-2 cells in vitro. Our omics data show that calcitriol can alleviate oxidative stress and fibrosis. Moreover, calcitriol can regulate the CXCL12/ERK1/2 cascade to inhibit the inflammatory response and renal cell apoptosis and induce renal autophagy through the AMPK/mTOR pathway. Our study partially elucidate the pathogenesis and treatment mechanism underlying hypertension, and provide new insights into the treatment of hypertension.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Calcitriol/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Lesión Renal Aguda/complicaciones , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular , Dieta , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Fibrosis/tratamiento farmacológico , Homeostasis , Hipertensión/complicaciones , Masculino , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Cloruro de Sodio Dietético , Serina-Treonina Quinasas TOR/metabolismo , Vitamina D/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...